Category: all-posts

Where Have All The Research Vessels Gone?

That’s the question that we hope to answer with the International Research Ships Schedules & Information project. Imagine with me if you will a site where we can log metadata about the research adventures of all oceanographic research vessels. Think of the opportunities that it would open up for researchers wanting to know who has been exploring in a specific region of the ocean, what they were looking for and, if we can get the metadata exposed, what data they collected with possible links to where it can be discovered. I’m proposing that we continue to develop the pot where all of that ship information and cruise metadata can be cooked, blended together with just the right seasonings (algorithms), and develop the scoops (tools) that would help users, agencies and researchers pull out a portion that suits their needs. I like to call the concept Stone Soup Science. I love the Stone Soup story and think the concept that it conveys in this data context is a perfect fit. (It’s much better than my other depictions – “Show Me The Data!” or <cue AC/DC music>”Dirty Data…Done Dirt Cheap”  ;?)

Stone Soup Science graphic

Stone Soup Science

No, I am not proposing that we build a data warehousing site to hold all of the oceanographic data that’s being collected. There are agencies and organizations all of the world that are doing a great job of doing that already. What I am proposing is that we continue the modernization of the Research Vessels site to help users mine for and discover where RVs have operated in the past. The next step would be to expose links to those data warehouses. I certainly wouldn’t want to have to try to comb through the holdings of NOAA, R2R, IFREMER, CSIRO, etc to find out who has been doing what oceanographic research, where they went and when they were there. I think this is a better one-stop RV shop solution. All research vessels would be added to the site, not just vessels over a certain size, not just vessels that belong to a certain agency, not just vessels that specialize in one facet of science. We can create customized views of those most certainly, but they’d be done by creating queries to the vessel database to return just those vessels that are of interest to the user or association.

A students Ocean Bytes article shows one of the benefits of being able to leverage and repurpose underway ships data. Eric Geiger pulled together the underway surface mapping data from four regional research vessels to create his satellite salinity modelling algorithm as part of his research thesis. It took Eric a significant amount of time to figure out what research vessels had been working in the region that he wanted to investigate, and even more time to be able to get access to the data that the ships had collected. Imagine if we were able to put together a set of online tools that facilitated that type of investigation. That’s part of what we hope to accomplish with the International Research Vessels Schedules & Information site.

Rather than regurgitate the information on the history and future modernization thoughts on International RV project, I’ll refer you to the About Ships page, which does a pretty good job of explaining things.

International RV Tracks 2002-2011

International RV Tracks 2002-2011

The visualization above was a plot that I made of a subset of research vessel cruise tracks from 2002-2011. In blue are the vessels designed as US RVs and in red are the non-US vessels. I think it’s quite intriguing to be able to visualize the locations where we are conducting research, transiting to the location where we plan to research (sensors still collecting underway data) and, sometimes more telling, the gaps in coverage where nobody seems to be going. Many thanks to SailWX.info for the data dump.

RV Hugh R Sharp Ship Track

RV Hugh R Sharp Ship Track

A couple of years back, we helped the RV Hugh R Sharp set up a ship-to-shore data transfer mechanism up using their newly acquired fleet broadband. Every hour or so, the transfer scripts zip up the ships underway data files and transfers the data ashore. It dawned on us that we could peek inside the data archive sent ashore, parse out a subset of the ships underway data in 10 minute intervals, and display the ship track and its underway data in near real time. The RV Sharp Ship Tracker site was born out of this effort (see screenshot above). We’d like to prototype a more user customizable open source version of this code and allow others to use the code for their own ships. This data feed could then be pulled into the Research Vessels site to show a higher resolution ship track for the RVs that participate as well as exposing the ships underway data for possible re-use by other students and researchers. For those institutions that already have a ship tracking application in place, we could develop services that would allow for harvesting and repurposing those data as well. The thought would then be to expose all of the ship information, schedule and track metadata via a web api that would allow others to use and repurpose the data as well. Whether it be on their own sites, displaying just a subset of the ships that they are interested in, or for use on mobile apps. Open data!

No Funding

I’ve been involved in the development and operation of the International Research Vessels Schedules & Information project since around 1998 or so. The project was previously funded by a collection of sponsors including NSF, NOAA, ONR, NAVO and the USCG, with each of them contributing funds towards the operation of the project until around 2005. Budget cuts at the time plus the reluctance to share upcoming ship schedules post 911 by some agencies resulted in our program losing its funding. I put the project into hot-standby until funding could be obtained to resume project development and metadata collection. The site stayed online and new ship information was added as it was received, but no major reworks of the site underpinnings happened. I’ve done the dog-and-pony show showcasing the site and its potential to a few groups since then attempting to get funding to move forward and while nearly everybody seemed to agree that the project should be funded, no funding ever came.

Web technologies are advancing at breakneck speeds and it’s time to move this project forward. Funding or no funding. (It’s either that or start working on a Flappy Ships app, make millions, but not contribute towards science ;?)

I’m always open for more help and ideas to maximize the projects capabilities and potential, so if you’d like to lend a hand, do some research, contribute some code, or offer up some other resources (funding, software, training), please let me know by emailing me at info@oceanic.udel.edu. The project needs re-architecting, the data tables need normalizing/denormalizing, the web design needs to be majorly spruced up, new GIS/mapping strategies and tools need to be figured out, ship data needs to be refreshed, web APIs need to be written, etc. Lots to do!

Help me help science!

Doug White

POV Sport25 Video Glasses for Fun & Research

How many times have you missed an opportunity to get some neat video to share because you didn’t have an extra hand to hold a video camera? Yeah, lots of times, me too! Well, no more!

The other day I ran across a special on Woot.com for a set of POV Sport25 video glasses and I figured what the heck and pulled the trigger. They arrived this week and I took them for a test drive (literally).

POV Sport25 video glasses

POV Sport25 video glasses

They are a lot lighter than I expected and my mind is racing with all the video opportunities these bad boys will open up for us here at the college. The camera is right in between the lenses (see the tiny pinhole above). Imagine being able to film the first-person view of a grad student tagging a shark, or the deployment and recovery of underwater robots, or even <insert your scenario here>! They came with a glasses case, cleaner, USB cable and – for those doing work indoors – a set of pop-in clear lenses so that you’re not walking around in too dark of an environment.

To give you an idea of what the video quality was, I charged them up and wore them to the parking lot and on my drive downtown. The uploaded video follows. Enjoy!

Atlantic sturgeon arriving earlier in the mid-Atlantic

The unusually warm conditions in the winter and spring of 2012 have resulted in water temperatures up to 3°C warmer than the previous 3 years resulting in comparable Atlantic sturgeon catches off the coast of Delaware occurring 3 weeks earlier than past sampling efforts.  During sampling events for Atlantic sturgeon we have also documented sand tiger sharks arriving off the coast of Delaware in late-March, a full month earlier than documented in previous seasons.

My research, conducted jointly with Dewayne Fox at Delaware State University and Matt Oliver at the University of Delaware, is focused on coastal movements and habitat use of adult Atlantic sturgeon during the marine phase of their life history.  By utilizing acoustic biotelemetry on both traditional fixed array platforms as well as developing mobile array platforms coupled with Mid-Atlantic Regional Association for Coastal Ocean Observing Systems (MARACOOS) I am going to model Atlantic sturgeon distributions in a dynamic coastal marine environment.  This research is particularly relevant given the recent protection of Atlantic sturgeon under the Endangered Species Act.  Determining factors influencing Atlantic sturgeon movements and distributions during their marine migrations will enable dynamic management strategies to reduce mortalities as well as impacts to commercial fisheries, dredging efforts, and vessel traffic.  In addition to allowing for dynamic management strategies the development of models for adult Atlantic sturgeon movements and distributions in relation to dynamic environmental conditions will illustrate how changing environmental conditions are going to impact this Endangered Species moving forward.

Graduate student Matt Breece with a recently telemetered female Atlantic sturgeon off the coast of Delaware

Utilizing New Tagging Technology to Characterize Sand Tiger Shark Habitat

Sand tiger sharks are large bottom dwelling sharks found in the coastal waters of the Eastern North Atlantic, and are known to frequent the Delaware Bay in the summer months. Sand tiger shark populations are currently in danger of over exploitation because they are slow growing and have extremely low birth rates. While we know that the sharks are found within the Delaware Bay during summer months, little is known about their movements during the rest of the year, or what oceanographic conditions limit their spatial extent. There is evidence that these sharks make large coastal migratory movements along the Eastern Seaboard. This makes habitat characterization difficult because the sharks travel throughout such a large area. It is important for managers to know the areas of intensive use by the sharks, and the species assemblages within those areas, in order to protect these apex predators.

Dr. Matthew Oliver and Danielle Haulsee with a sand tiger shark caught in the Delaware Bay.

Our project, a collaboration among Delaware State University’s Dewayne Fox and the University of Delaware’s Matthew Oliver and Danielle Haulsee, will document and characterize the movements of sand tiger sharks, their habitat preferences, and the community assemblages they encounter using new and innovative electronic tagging technology. Sand tiger shark movements will be recorded using passive telemetry in addition to pop-off satellite archival tags. We will also deploy a new type of tagging technology, which acts as a mobile receiver, and will record any encounters with other sharks, fish or other marine animals that have been tagged with acoustic tags. We will then use satellite and remotely sensed data resources from the Mid-Atlantic Regional Association for Coastal Ocean Observing Systems (MARACOOS) to characterize and model the habitats and oceanographic conditions used by sand tiger sharks. This study will give managers a better understanding of the spatiotemporal patterns in sand tiger shark movements along the East Coast, as well as inform management decisions regarding sand tiger shark habitat utilization.

Predicting Sea Surface Salinity from Space

The simplest definition of salinity is how salty the ocean is. Easy enough, right? Why is this basic property of the ocean so important to oceanographers? Well, along with the temperature of the water, the salinity determines how dense it is. The density of the water factors into how it circulates and mixes…or doesn’t mix. Mixing distributes nutrients allowing phytoplankton (and the rest of the food web) to thrive. Globally, salinity affects ocean circulation and can help us understand the planet’s water cycle. Global ocean circulation distributes heat around the planet which affects the climate. Climate change is important to oceanographers; therefore, salinity is important to oceanographers.

Spring Salinity Climatology for the Chesapeake

Spring Salinity Climatology for the Chesapeake

Salinity doesn’t vary that much in the open ocean, but it has a wide range in the coastal ocean. The coast is where fresh water from rivers and salt water in the ocean mix. Measurements of salinity along the coast help us understand the complex mixing between fresh and salty water and how this affects the local biology, physics, and chemistry of the seawater. However, the scope of our measurements is very small. Salinity data is collected by instruments on ships, moorings, and more recently underwater vehicles such as gliders. While these measurements are trusted to be very accurate, their spatial and temporal resolution leaves much to be desired when compared to say daily sea surface temperature estimated from a satellite in space.

So, why can’t we just measure salinity from a satellite?Well, it’s not as simple, but it is possible. NASA’s Aquarius mission http://aquarius.nasa.gov/ which was launched this past August is taking advantage of a set of three advanced radiometers that are sensitive to salinity (1.413 GHz; L-band) and a scatterometer that corrects for the ocean’s surface roughness. With this they plan on measuring global salinity with a relative accuracy of 0.2 psu and a resolution of 150 km. This will provide a tremendous amount of insight on global ocean circulation, the water cycle, and climate change. This is great new for understanding global salinity changes. What about coastal salinity? What if I wanted to know the salinity in the Chesapeake Bay? That’s much smaller than 150 km.

That’s where my project comes in. It involves NASA’s MODIS-Aqua satellite (conveniently already in orbit: http://modis.gsfc.nasa.gov/), ocean color, and a basic understanding of the hydrography of the coastal Mid-Atlantic Ocean. Here’s how it works: we already know a few things about the color of the ocean, that is, the sunlight reflecting back from the ocean measured by the MODIS-Aqua satellite. We know enough that we can estimate the concentration of the photosynthetic pigment chlorophyll-a. So not only can we see temperature from space, but we can estimate chlorophyll-a concentrations too! Anyway, there are other things in the water that absorb light besides phytoplankton and alter the colors we measure from a satellite.

Spring Salinity Climatology for the Mid-Atlantic

Spring Salinity Climatology for the Mid-Atlantic

We group these other things into a category called colored dissolved organic material or CDOM. CDOM is non-living detritus in the water that either washes off from land or is generated biologically. It absorbs light in the ultraviolet and blue wavelengths, so it’s detectable from satellites. In coastal areas especially, its main source of production is runoff from land. So, CDOM originates from land and we can see a signal of it from satellites that measure color. What’s that have to do with salinity?

You may have already guessed it, but water from land is fresh. So, water in the coastal ocean that is high in CDOM should be fresher than surrounding low CDOM water. Now we have a basic understanding of the hydrography of the coastal Mid-Atlantic Ocean, how it relates to ocean color, and why we need the MODIS-Aqua satellite to measure it. So, I compiled a lot of salinity data from ships (over 2 million data points) in the Mid-Atlantic coastal region (Chesapeake, Delaware, and Hudson estuaries) and matched it with satellite data from the MODIS-Aqua satellite in space and time. Now I have a dataset that contains ocean color and salinity. Using a non-linear fitting technique, I produced an algorithm that can predict what the salinity of the water should be given a certain spectral reflectance. I made a few of these algorithms in the Mid-Atlantic, one specifically for the Chesapeake Bay. It has an error of ±1.72 psu and a resolution of 1 km. This isn’t too bad considering the range in salinity in the Chesapeake is from 0-35 psu, but of course there’s always room for improvement. Even so, this is an important first step for coastal remote sensing of salinity. An algorithm like this can be used to estimate salinity data on the same time and space scale as sea surface temperature. That’s pretty useful. The folks over at the NOAA coastwatch east coast node thought so too. They took my model for the Chesapeake Bay and are now producing experimental near-real time salinity images for the area. The images can be found here: http://coastwatch.chesapeakebay.noaa.gov/cb_salinity.html. They will test the algorithm to see if it is something they want to use

Climatologies of salinity for all of my models can be downloaded here: http://modata.ceoe.udel.edu/dev/egeiger/salinity_climatologies/.

I view this project as an overall support of the NASA Aquarius mission by providing high resolution coastal salinity estimates that are rooted in in situ observations. I hope this information proves to be useful for coastal ocean modeling and understanding the complex process that effect the important resource that is our coasts.

Demobilization and Remobilization of the Hugh R Sharp

Summer is an especially busy time for research vessels. The UNOLS fleet is making increasing use of containerized portable lab vans to shave some time and effort off of offloading the science party from one cruise and loading up the next mission and their gear. They also increase the flexibility of the research vessels by giving them the option to add additional science capabilities and facilities to vessel users. Options include adding:

  • Dry Labs
  • Wet Labs
  • Isotope Labs
  • Clean Labs
  • Cold Labs
  • Additional Berthing

This is a time lapse that we shot of the RV Hugh R Sharp returning from a multi-week scallop survey, unloading one lab van and then loading two more fresh ones before fueling up (both diesel and food) and departing on the next mission. Enjoy!

It’s all about the E-Lec-Tricity

We had a gentleman named Matthew Vest come to the GVis lab the other day to show off his do-it-yourself creation. He was looking for information on whether he might be able to showcase it at the upcoming Coast Day 2011 event that happens each year on the second Sunday of October here at the Hugh R Sharp campus in Lewes.

Matthew has done something that most of us dream about doing, something many of us say we’re going to do, and that same something that most of us never get off our duffs and actually do. He has taken a 1985 Chevy S-10 truck, removed the gasoline engine and tank, and replaced them with an electric drive motor (from a fork lift he says) and a bed full of 6 volt lead acid batteries (aka ‘golf cart batteries’ – 24 in total). The conversion took him about 2 years to complete and cost approximately $10,000 dollars but now he is the proud owner (and creator) of an all-electric vehicle that will to approximately 40-60 miles on a charge.

Matthew Vest' Electric Truck

Matthew Vest’ Electric Truck

Matthew went out of his way to select “Deka” batteries to power his creation, which he says are 100% recyclable. Each of the 24 batteries weighs in at 60 lbs, for a total battery weight of about 1450lbs. These batteries are wired in series to generate the 144 volts DC that power the Warp-9 electric motor that replaces the gas engine. There is one 12 volt battery which is used to power the stock lights, wipers and horn.

Chevy S10 - Batteries in the Back

Chevy S10 – Batteries in the Back

A Curtis 1231c controller is like the brains of the truck, controlling the power flow. A Zivan ‘smart charger’, which runs on standard 110v, sits behind the driver seat. When fully discharged, the batteries take about 10-12 hours to recharge. The only sound that the truck makes when it is running is the sound of the add-on vacuum pump that is also under the hood. It creates the vacuum that assists with the stock braking system of the truck.

Chevy S10 - Under the Hood

Chevy S10 – Under the Hood

Matthew is hoping to touch base with some of the researchers at UD that are involved in the V2G or “Vehicle To Grid” project so that he can assess whether his S10 can also be integrated with the power grid. For more information on V2G and GIEV’s (Grid Integrated Electric Vehicles) you can read more on the Q&A section on the V2G site.

We asked Matt how he got started with the project and he said it just took some research online, a couple of “how to retrofit your gas vehicle into an electric vehicle” books, and some very helpful people on a few of the EV forums. We salute Matt for what turned out to be an excellent EV refit and for his consideration of the environment when he selected the batteries and materials for his electric vehicle project. Well done!

 

Hurricane Katia Footprints

The ORB Lab was having a meeting in the GVis Lab this week and, as usual, the East Coast US 8-Day Averaged Sea Surface Temperature overlay was up on the screens. Dr. Oliver pointed to the screen and noted that there was a path cutting across the Gulf Stream that was cooler than usual and that it was probably due to upwelling and mixing from hurricane Katia. Sure enough, we loaded up a layer showing Katia’s track and they lined up.

Katia SST Trail

Katia SST Trail

We then checked to see if there was anything noticeable on the East Coast US 8-Day Average Chlorophyll layer and you can see what appears to be a slight bloom in chlorophyll along the track as well (slightly lighter blue).

Katia Cholorophyll Trail

Katia Cholorophyll Trail

Another neat view is the markedly cooler water that you flowing into the bays from the increased river discharge that resulted from the large amounts of rain dropped by hurricane Katia and tropical storm Lee as they passed through.

Cold river water 20110913

Cold river water 20110913

These layers and several others are processed and uploaded daily and made available via the Orb Lab website in the Public Access section. They are exposed via Google Maps interfaces as well as Google Earth embedded views and linkable KMZ file formats. Neat stuff!

NASATweetup Mission Accomplished

Welcome Home Flat Samantha!

Samanthas and Astronaut Greg Johnson

Samanthas and Astronaut Greg Johnson

Everything has finally come full circle and Flat Samantha is once again re-united with her creator Samantha. Calling @FlatSamantha‘s trip a “circle” might be a bit of a misnomer however as she has had a wild adventure over the last couple of months. Her journey started in April when young Samantha found out that I was selected to attend the #NASATweetup for the final launch of the space shuttle Endeavour (#STS134). Samantha (and all the rest of the students in the lab) were disappointed that they couldn’t come with me to watch this historic launch, and Samantha took matters (and scissors and markers) into her own two hands and created a flat adventurer that she named Flat Samantha. She asked me if Flat Samantha could ride with me to the Endeavour launch and go up in the shuttle to the International Space Station. I would have loved to say “yes” but I had to inform Samantha that time was too short and that I could only take her down to watch the shuttle launch, but that I would take lots of pictures of her during this adventure and let her share them via a Twitter account that was set up for her (after all, she was going down to a NASATweetup – how’s a girl to tweet if she doesn’t have an account ;?).

I emailed Stephanie Schierholz that I would like to bring along another #NASATweetup attendee and that she wouldn’t take up any extra space. Without batting an eye Ms. Schierholz said “no problem, I’ll have a #NASATweetup badge waiting for her as well”.

FlatSamantha STS134 NASATWeetup Badge

FlatSamantha STS134 NASATWeetup Badge

The original launch date for the shuttle was adjusted forward as there was a conflict between when the Endeavour would be at the ISS and when the Soyuz 25S capsule would be there with some time sensitive experiments. It just so happened that the new launch date fell during my sons spring break period at school, so we scheduled a family vacation to Orlando prior to the launch and had a blast sharing the road trip down and the theme park adventures with Flat Samantha prior to the new launch date. I took her over to the Kennedy Space Center for the #STS134 #NASATweetup where we enjoyed the many presentations that the fine people at NASA had arranged for us on day #1 and then came back for what ended up being a scrubbed launch on day #2 (see: “STS-134 NASATweetup is only half over“).

We sat in the tent waiting for the hundreds of thousands of other disappointed spectators that were parked outside the Kennedy Space Center to head home after the launch scrub, knowing that it would be a couple of hours at least before the roads would be passable. As we chatted amongst ourselves, I started talking with Beth Beck and she asked me about the back story on my flat companion. I told her about Samantha and how she would like to have seen Flat Samantha go into space and that I could only promise to get her to the NASATweetup event to watch the launch. Ms. Beck said that since the launch was scrubbed, that there might be a possibility to fulfill Samantha’s wishes and that she would get back to me. Sure enough, a few days later I got an email from her saying that one of the astronauts – Gregory Johnson (aka @Astro_Box) said that he would do what he could to get @FlatSamantha into space. True to his word, we received a picture from space of one @FlatSamantha in the cupola of the International Space Station.

Flat Samantha in the ISS Cupola (photo by Gregory Johnson)

Flat Samantha in the ISS Cupola (photo by Gregory Johnson)

Upon the Endeavour’s return, Flat Samantha was escorted to a couple of other NASA Tweetup events including the #NASATweetup for the Sophia Telescope, the @NASAJPL Tweetup by @Schierholz and even the historic landing of the space shuttle Atlantis #STS135 with @BethBeck. Being flat and portable makes it much easier to get invited to some pretty awesome events it seems.

The title of this post is “NASATweetup Mission Accomplished” because the journey home to creator Samantha was accomplished this past week. The journey home was not via a FedEx envelope or the like, however. Flat Samantha was escorted home and hand-delivered by none other than astronaut Gregory Johnson while he was on the east coast giving a mission debriefing to NASA empoyees at NASA HQ in DC. Samantha, her parents and myself were invited to attend the debriefing and to meet with @Astro_Box for some photos following the debriefing by the ever awesome Beth Beck. When the University of Delaware’s ORB Lab students (who were anxiously following @FlatSamantha’s adventure) found out about the trip, they asked if they could come too. I asked Ms. Beck whether that was possible and not only did she say “yes” but she provided the entire group with reserved up-front seating for the debrief!

NASA HQ Debrief

NASA HQ Debrief (photo by Beth Beck)

I want to give a heart-felt thank you to Stephanie Schierholz and Beth Beck for allowing us all to join @FlatSamantha in her whirlwind adventure, both via Twitter and in person. I would also like to thank Gregory Johnson for making not only one little girls wish come true by bringing her flat proxy into space, but for also taking time out of his incredibly busy schedule to bring that excitement to our small group of students and the rest of the world. The employees and representatives of NASA embody the compassion, the “can do” attitude and the educational and outreach expertise that the rest of us should pay close attention to. We are all honored to have been included in these adventures and their memories that we will carry with us for a lifetime. Rocket On NASA!

Group Photo with Greg Johnson and Flat Samantha (photo by Beth Beck)

Group Photo with Greg Johnson and Flat Samantha (photo by Beth Beck)

PS – All of the Flat Samantha #STS134 #NASATweetup adventure photos have been uploaded to the Flat Samantha Ocean Bytes media gallery – enjoy!

A Wind Turbine Experience

Luckily Blaise Sheridan is not afraid of heights, as he climbs up the UD 2-megawatt wind turbine for the second time. With his Master’s thesis revolving around wind energy, he is one of only four people from UD certified to climb the turbine. Although there is an elevator (more technically termed a personnel or ‘man’ lift), it can only be used by those who take a more intensive 4-day training course. Instead, a 2-day Fall Protection/Competent Climber class was taken by two facilities employees (Don Smith and Rodney McGee), as well as two UD students (Blaise and DeAnna Sewell). With this course under their belt, they can climb the ladder to the top of the 256-foot-tall-turbine. For their safety, they are always connected to a guide wire that clips onto the cable grab of each climbers harness. The cable ensures that if a climber falls they will only drop less than a foot.

 This goal of this trip was to string up 3 cables to install bat microphones. The microphones will allow researchers to see how often bats pass around the turbine. This anticipated one-day job ended up taking about 2.5 days due to lightning and the large amount of on site planning that needed to take place. With the help of a Gamesa contractor, Blaise and Rodney were able to install the research equipment while the contractor performed routine maintenance and provided his expert guidance.

The turbine is currently producing more electricity than projected, although how much more is still being studied. On average, it produces more energy than the university needs, which makes the excess available to the town!

Inside the nacelle, the bus sized structure on the top of the tower where all the interesting mechanical and electrical components are housed, Blaise notes,  “It must be at least 120 degrees” from the waste heat given off by the electrical transformers, not to mention all the gearboxes, friction and the fact that heat rises up the turbine. But, outside, on top of the nacelle, there’s enough airflow to cool you off! Blaise admits it can be very tiring to climb but the incredible view from the top is worth it. He discloses his favorite part is to watch the wake off the boats coming into Roosevelt Inlet. With the hope of additional renewable energy options in the future,  “It’s still very novel for a university to have this turbine and its been a once in a life time experience…one to check off the bucket list.  Not to mention it’s a great bar story.”

Timelapse of a Day in the ORB Lab’s GVis Room

I was showing the students how to operate the “birdcam” so they can use it to record a series of stills to create a time lapse video of an upcoming research cruise on the RV Hugh R Sharp. We left the birdcam in the corner and let it click away all day, shooting a new still every minute and the video above is the resulting masterpiece. It is embedded from “The UD ORB Lab” channel on YouTube.

You can learn more about the “birdcam” in a previous post about “Timelapse Video on the Cheap“. The GVis Room pictured above is the “Global Visualization Room” that was described in the post “How to Construct a Global Visualization Lab“.

Thanks to the ORB Lab crew for sharing!

 

DeepZoom of Endeavour on the Launch Pad

[Zoom.it shut down, so my DeepZoom image is no longer available. I’ll re-create it soon…]

(The image above is dynamic and zoomable, play around with it some. Mouse over it and use your scroll wheel, click and drag around on the image, or click the plus and minus buttons, even go full screen with the button on the lower-right-hand corner – have fun with it!)

One of the challenges of taking photos of special events and places is that they always look so small and lacking in visual acuity and detail. You take a picture and then later, when you’re looking at it, you feel underwhelmed that it just doesn’t capture the clarity that you remember seeing.

Two technologies that I cobbled together to create the zoomable picture above of the Endeavour (STS-134) on the launch pad are Microsoft ICE (Image Composite Editor) and DeepZoom to tile and create javascript that allows you to zoom in and out of the image to enjoy much more detail. You can learn more about Microsoft ICE via this HD View blog posting, including details on what it can do as well as download links (it’s free!). I used my digital camera to zoom into the shuttle while it was on the launch pad post RSS shield retraction and took a matrix of photos, making sure that each photo overlapped with the others a little bit so that ICE could stitch them into one large hi-res photo. Since we’re limited in the number of pixels we can display on a screen, I leveraged DeepZoom technologies to break the image into a series of sub-images and to create javascript to swap in higher-resolution tiles as you zoom into the image. Similar to what you find when you zoom into a Google Map image or the like.

Microsoft had made it quite easy to automagically create DeepZoom images (based on SeaDragon technology) via their Zoom.it site. All I had to do was upload the composited image that I’d created using ICE to a web server, feed Zoom.it the URL of the large graphic image file and then copy the embed code from the results and paste them into this post after the file had been processed. The resulting javascript and tiles that were created are hosted on their site, so I didn’t even need to include them in my image file holdings.

I hope this helps in two ways:
A) Appreciate the awesome site that we were seeing at the STS-134 NASATweetup
B) You now know how to fish (ie: how to create cool visualizations like this). Have at it!

ps – If you want to pull down the full hi-res image that was used to create this so you can print out an awesome poster of the shuttle on the launch pad, you can get it here. Enjoy!

Endeavour Launch Photo Time Lapse

I took as many photos as I could during the Endeavour launch yesterday morning as fast as my camera would allow. Here is a time lapse of the photos taken before it disappeared into the clouds. I uploaded it to YouTube at 1080p, so make sure to go full-screen with it. Enjoy!

Update: Just found a link to a video that @AVWriter posted – crank up the subwoofer and enjoy the launch from the same vantage point that we had!

Endeavour RSS Shield Retraction Time Lapse

On Sunday we had the unique opportunity via the STS-134 #NASATweetup of being able to take pictures of the space shuttle Endeavour from about 600 yards away while the RSS shield was “retracted”. RSS stands for Rotating Service Structure and it is rotated away from the shuttle prior to fueling and subsequent launch. While I was busy snapping a gazillion pictures, I set up my el-cheapo digital video camera on the tripod and recorded the ~20 minute process. Below is a fast forwarded time lapse, squeezing the entire process into just over a minute. Enjoy!

Conch Reef Survey for NASA’s NEEMO 15 Project

Dr. Art Trembanis’ Coastal Sediments, Hydrodynamics & Engineering Lab (CSHEL) has been pretty busy lately. Not long ago I did a post about the prototype sub-bottom profiler section that he added to his Autonomous Underwater Vehicle (AUV) (see: Sub-Bottom Profiling using an AUV). I was down at the NASATweetup for the Endeavour (STS-134) launch not long ago and I got chatting with some folks from NASA’s Open Goverment Initative about the NEEMO 15 project (NEEMO stands for “NASA Extreme Environment Mission Operations“) and we discussed UD’s involvement.

It takes a village of roboticists to run a successful AUV campaign

It takes a village of roboticists to run a successful AUV campaign

When I emailed Dr. Trembanis upon my return to Delaware, he emailed me back with instructions to browse to UNCW’s Life Support Buoy live webcam above the Aquarius Reef Base. Sure enough, he was there aboard the RV George F. Bond monitoring his Gavia Scientific AUV as it acoustically mapped the Conch Reef around the Aquarius as a precursor robotic mission for NEEMO 15.

Go Pro Hero Attached to the AUV

Go Pro Hero Attached to the AUV

Here is video footage shot by an off-the-shelf HD Go Pro Hero digital video camera that was attached to the AUV:

httpv://www.youtube.com/watch?v=8n3nR9TaVGo

The mapping mission ran for 4 days and covered approximately 100km, resulting in about 15Gigabytes of raw data. Here’s an overview map of the mission.

Aquarius NEEMO 15 precursor survey

Aquarius NEEMO 15 precursor survey

Many thanks to Dr. Trembanis for the video and imagery to go along with the story. Be sure to visit NASA’s NEEMO site to learn more about the mission and what’s to come. Visit the CSHEL site to learn more about the research that’s going on there and to see other cool video and image products that they’re producing.

STS-134 NASATweetup is only half over

I’m back from the Kennedy Space Center and the first half of the STS-134 NASATweetup. We got through most of the activities slated for Day #1 – which included meeting the ~149 other #NASATweetup attendees, a demo of the Extravehicular Mobility Unit (EMU) and Mark III spacesuits, and talks by Dana Hutcherson (flow director), Tara Ruttley (ISS associate program scientist) and astronaut Clay Anderson (@Astro_Clay). They really rolled out the red carpet for us!

@CPUGuru, @FlatSamantha and @Astro_Clay

@CPUGuru, @FlatSamantha and @Astro_Clay

The second half of the day involved visits to the Shuttle Landing Facility and the Mate-Demate Device (big honkin’ crane and assembly to lift the shuttle onto and off-of the 747 that carries it), the Vehicle Assembly Building (the large picture behind us in the picture above) – also known as the “world’s largest single story building” in which they work on and assemble the shuttle, booster rockets etc. The last part of Day #1 was supposed to be a site visit to the shuttle itself to watch the retraction of the Rotating Service Structure (or RSS) but a rather nasty storm front presented itself and all sorts of dark clouds, rain and lightning ensued.

The Lightning Storm

The Lightning Storm

Retraction of the RSS was delayed from its original 7:00pm time to much later in the evening, so we missed being able to get up close and personal with the shuttle. By the time we arrived for “Launch Day” the following morning, the RSS had already been retracted and the fuel tanks were being filled with liquid oxygen, so we were unable to get any closer than the press site almost 3 miles away.

On Day #2 we had a group picture taken by the countdown clock and talks by astronauts Ricky Arnold (STS-119 Discovery) and Leland Melvin (@Astro_Flow – now associate director for Education at NASA). We also had a talk by Daire McCabe – a designer at Lego followed by a weather/launch update by Lt. Col. Patrick Barrett of the 45th Weather Squadron.

We all went out to the roadside in front of the Vehicle Assembly Building (VAB) to watch the caravan carrying the astronauts to Launch Pad 39A go by and wish them well, however the vans came, stopped, and turned back around (a first we’re told). Apparently a power coupling unit was not functioning on the shuttle and they scrubbed the launch. We were all a tad disappointed, but I heard a good quote along the lines of “it’s better to be on the ground wishing you were in the air than to be in the air and wishing you were on the ground”.

Caravan Carrying the Astronauts

Caravan Carrying the Astronauts

The current status is that they are in the process of replacing the faulty power coupling unit and that the earliest possible launch date is May 10th. Both @FlatSamantha and I (@cpuguru) plan on heading back down to KSC as soon as they tell us a definitive launch date. We’ll be sure to take some awesome pictures and will keep you informed once the second half of this #NASATweetup resumes. For a good timeline of the adventures of @FlatSamantha, be sure to follow her on her Twitter page, where she’ll keep you informed and upload pictures of what’s going on right then. Until then, we’re on hot stand-by, our bags are packed and we’re anxiously awaiting the good news that the launch is a go.

Sub-Bottom Profiling using an AUV

I was minding my own business, walking between Smith Lab and Cannon Lab buildings when what to my wandering eyes should appear but a reeeallly long stretched out Gavia Scientific AUV. My geek radar started going off and I just HAD to investigate exactly what was inside these newly milled sections of hull.

Gavia Scientific AUV with a recent addition

Gavia Scientific AUV with a recent addition

I invited myself into the lab and started asking some questions. It turns out that these new sections contain a prototype Teledyne Benthos Chirp III sub-bottom profiler that was specially designed to integrate with an AUV. Dr. Art Trembanis’ CShel lab and Val Schmidt from the University of New Hampshire’s Center for Coastal and Ocean Mapping were working with UTEC Survey Inc. to successfully integrate and test this new addition to the AUV’s sensor lineup. I cornered Nick Jarvies from UTEC and he gave me the run-down on the new addition (thanks Nick!):

httpv://www.youtube.com/watch?v=fQkWAhaFcsk

Sample SBPWhat is a “sub-bottom profiler” you ask? Per the Wikipedia entry, it is a “powerful low frequency echo-sounder…developed for providing profiles of the upper layers” of the ocean floor. In the case of the Chirp III, probably in the range of 10-20kHz. Per Dr. Trembanis “Data is stored in an onboard Compact Flash card in an industry standard SEG-Y format.  The advantage of a chirp signal over a single frequency output is that through chirp demodulation of the returning signal one can get a better compromise between penetration and resolution.  The lower the frequency the greater the penetration but the less the resolution (and vice versa for high frequency) so a chirp signal which modulates from a low to high frequency provides penetration and resolution.  All of this depends to a great degree on the kind of bottom material one is trying to penetrate.”

Internal view of the Benthos Chirp III AUV SBP

Internal view of the Benthos Chirp III AUV SBP

The advantages of an AUV-based sub-bottom profiler (also per Art Trembanis) are:

  • We remove lots of water column data that would normally be unwanted and has to be removed/ignored from the record.
  • Because we can precisely follow the terrain near the bed or hold a constant depth well below the surface we can remove/diminish effects of waves that cause a ship to bob up and down.
  • We are able to do higher resolution characterization of the subsurface in greater water depths since otherwise from a surface ship you would have to use a lower frequency system to penetrate through the water column.
  • Because of the precise navigation of the AUV we can get very tight line spacing and precision following of features (i.e. pipeline routes) which allows us to provide better data more efficiently.

Thanks to everybody for taking time to talk on camera and for answering my questions!

Antarctic Storm Moves In

Our streak of excellent weather has officially come to an end with a large low pressure system in the Drake Passage.

Storm moves into Palmer Station

The weather was even tough tough for the ever-working “birders” who were going to deploy a few satellite tags on penguins today. REMUS missions are cancelled for the day. That might be good since one sprung a leak on a mission yesterday. Only the gliders are out….which makes gliders an awesome platform for ocean science when the weather gets a bit “snotty”. They don’t complain and don’t get sea-sick. The “Blue-Hen” continues is mission mapping the foraging locations of penguins when even the penguins are too scared to go out! That means I get to stay home and peel garlic (very necessary for all the amazing food here).

Garlic….it’s like the best thing you can eat when it is windy

Saturday is also the day we all clean the station and have a station meeting. I got to help clean the kitchen today. That was really nice because I totally miss cleaning the kitchen at home (no, not really). We also learned that hiking on the Gamage glacier behind the station is more restricted after a new crevasse opened up. Funny story about that…..Mark Moline found it by falling into the crack. He was fine, but it was a bit un-nerving. The GSAR (Glacial Search and Rescue) team changed the boundaries after they went and uncovered the full extent of “Mark’s Crack”.

The bad weather lets us do a bit of data analysis on where the penguins are foraging. The penguins seem to be keying off of the deep canyon off of Palmer station. This has been a working hypothesis from the “birders”

Finally, I’ll leave you with an awesome moon-rise over the Gamage Glacier. Pretty awesome sight.

Moonrise over Gamage Glacier

Penguins from Space


The West Antarctic Peninsula (WAP) is one of the most rapidly warming regions on Earth, with a 6°C temperature rise since 1950.  Glaciers are retreating and the duration and extent of sea ice has significantly decreased. Many species rely on the sea ice as a resting platform, breeding ground, protective barrier or have life histories linked to sea ice thaw and melt cycles. With the declines in sea ice, many species are having a difficult time surviving and adapting to the new warming conditions.

The food web along the WAP is short and allows energy to be transferred efficiently. Phytoplankton (tiny plants that capture energy from the sun) are ingested by zooplankton (such as krill) which are in turn eaten by penguins, seals and whales. Due to the rapid nature of the warming around Palmer Station and the short food chain, it is an ideal location to study the effects of the acute changes in a warming environment.

Palmer Station, Antarctica

In particular, Adélie penguins are experiencing significant population declines near Palmer Station, Antarctica.  On Anvers Island, populations have decreased by 70%. Declines in sea ice have also led to declines in the preferred food of Adélies.  Silverfish have nearly disappeared and krill have decreased by 80%. Currently, Adélies are having a difficult time finding a satisfying meal. In turn, many species are migrating southward to look for new places to live and better food resources. On the other hand, ice-avoiding species (Gentoo and Chinstrap penguins) have been able to move south into the Adélies home range.

Adélies are a prime vertebrate species to study in relation to a changing environment.  Tagging Adélies in summer breeding colonies with satellite-linked transmitters, allow foraging locations to be monitored. Their foraging tracks can be compared to satellite derived oceanic properties such as sea surface temperature, chlorophyll, sea-ice, and wind. Since conditions have changed so quickly over the last few decades, the recent development of satellites can easily detect these changes. The UD-134 Slocum Glider (underwater robot) will be deployed in January 2011 and 2012, to do additional surveys near breeding hotspots.  This will allow us to combine satellite data with high resolution in-situ glider data to predict how ideal foraging locations for Adélies may change as warming continues. This will also test the satellites ability to accurately describe ecological changes that are occurring along the WAP.

Adélie Penguin

The Palmer Long Term Ecological Research Program (PAL LTER) began in 1990, and investigates aspects of this polar environment while maintaining historical records for marine species.  Historical satellite data and species records will be useful in predicting phytoplankton, krill and penguin abundances and distributions.  Models will be used to predict future foraging locations of Adélies in PAL LTER region of the WAP. It is important to study this region because changes are happening faster than predicted and these changes can lead to dramatic effects in our lifetimes.

UNOLS RVTEC 2010

RV HSBC Atlantic Explorer

RV HSBC Atlantic Explorer

Just got back from the 2010 UNOLS RVTEC meeting, which was held at the Bermuda Institute of Ocean Science (BIOS) – home of the RV HSBC Atlantic Explorer.

(Acronym Police: UNOLS = University-National Oceanographic Laboratory System and RVTEC = Research Vessel Technical Enhancement Committee).

For those unfamiliar with RVTEC, it is a committee organized around 1992 to “provide a forum for discussion among the technical support groups of the National Oceanographic Fleet” in order to “promote the scientific productivity of research programs that make use of research vessels and oceanographic facilities and to foster activities that enhance technical support for sea-going scientific programs” as listed in Annex V of the UNOLS charter. Membership is extended to UNOLS member institutions but “Participation shall be open to technical and scientific personnel at UNOLS and non-UNOLS organizations”.

The meeting agenda was pretty intense and we were pretty much straight out from Monday through Friday afternoon. There were a lot of scary smart people in the room doing some pretty amazing things in support of science operations at their respective institutions. I tried to compile a list of Tech Links on the ResearchVessels.org site to make it easier to find some of the various resources that were discussed at the meeting. I did the same thing at last years RVTEC meeting in Seattle but some additions and corrections were needed based on feedback from the members. I’m hoping that I’ll be able to obtain funding to attend next years meeting and perhaps the upcoming Inmartech meeting (look for a post on Inmartech soon).

I shot some video, made some fantastic contacts and had some interesting discussions at this years RVTEC meeting. If all goes smoothly, I’ll have a couple of new blog entries online this week to help share some of the wealth of knowledge.

3DVista Panoramic Tour of the Sharp

I tinkered around with a demo copy of the 3DVista Stitcher and 3DVista Show 3.0 to push its capabilities a tad. I touched on the packages in a previous blog post about the Global Visualization Lab where I did a simple panorama of the room. The wheels started turning and we decided to push the envelope a little and create a series of panoramic views of the RV Hugh R Sharp as a proof of concept for an online virtual tour of a research vessel.

Panoramic Tour of the RV Hugh R Sharp

Click on this image to visit the proof-of-concept panorama…

The image above is a screen shot of the proof-of-concept panoramic tour we came up with. Click the image above or this hyperlink to visit the actual panoramic tour. The pane on the left shows an interactive panorama of the various points of interest on the ship. The right-hand pane shows a scan of the deck and compartment that the panorama represents. If there is no user action, the tour will cycle through a complete 360 view of each panorama and will move onto the next panorama in the list if nothing is clicked. There are two drop-d0wns to the right, one above the deck layout to select a specific panorama and one below it to select a specific panorama.

A really cool feature of the product is the ability to take the panorama full-screen for a more immersive experience. To do so, just click on the arrow button in the top-right-hand corner next to the question mark symbol. Once in full-screen mode, you can easily cycle through the various pano’s by mousing over them near the bottom of the screen.

The 3DVista Show software allows you to insert hot-spots into the panorama’s as well that can either link to other pages/sites or to include an audio clip into the mix. This makes it quite easy to include additional information about a specific area or feature. I inserted an animated arrow pointing to the Multibeam Operator Station on the Main Deck -> Multibeam Tech Area that links out to the Reson Seabat 8101 Multibeam Echosounder posting.

Multibeam Tech Pano

The mind races with the various uses for this type of technology. It allows for mobility impaired individuals and class groups to tour a space that they’d ordinarily be unable to access. It also allows scientists to “look around” and get a feel for the spaces that they’d be using when they come onboard a vessel. For a future project, I’d like to get support do some panorama’s both inside and outside of the various UNOLS lab vans that would allow scientists to virtually stand in the lab vans and walk around them to see how they’re laid out. 3D panorama’s of research sites in remote locations like the arctic and antarctic also come to mind as does tours of mineral sample and other collections with hotspots included for the various specimens for links to additional information. The application of this tech abounds.

I talked with the folks at 3DVista and it looks like they offer a 15% academic discount for the software so be sure to ask about if if you’re going to purchase it. They also list a one-shot 360 degree pano lens and adapters to make shooting the digital pics a little easier. We used a 180 degree fish-eye lens for our pano shots, which means we did 3 shots at each location 120 degrees off from one-another and stitched them together with the 3DVista Stitcher program.

Many thanks to Lisa Tossey for taking the photos and getting this project rolling. I posted this as an unpolished proof-of-concept version. I look for the ready-for-prime-time panorama that she comes up with for the CEOE site. I also look forward to seeing any cool panoramas that are out there for research projects. Be sure to share your links.

Small & Mighty Mini-Top Barebones NetPC

What came in the box

MiniTop Contents

I thought I’d take a minute to share some info on the small and mighty Mini-Top barebones system from Jetway Computer. (Not to be confused with the Small & Mighty Danny Diaz ;?) This unit is basically the guts of a netbook but without the screen so I’ll call it a NetPC. We are thinking about introducing them into the computing site here at work and I was pretty impressed by its feature set and tiny size. Keep in mind that there are several models of ITX barebone systems to choose from over at Jetway. We opted to go with the model JBC600C99-52W-BW, which retails for about $270 at NewEgg. The “-BW” at the end means that it ships with a metal bracket (shown in front of the included remote in pic above) that will allow you to mount the unit to the VESA mounts on the back of most LCD monitors.

Minitop size photo

Smaller than my hand

Since the unit is so small (see pic to the right) this allows you to tuck it it out of the way quite easily behind a monitor. It also comes with an angled metal bracket that allows you to stand it up on its end and stick-on rubber feet in case you want to lay it on its side. Note that this is a “barebones” system, which means that it’s up to you to add the memory (up to 4Gigs of RAM), a single interior hard drive (2.5″ SATA) and a monitor to the mix. We purchased a 60Gig OCZ Agility 2 SSD (solid state drive) to the unit and a couple of Gigs of DDR-2 800/667 SODimm memory to the box (purchased separately).  The unit comes with a driver CD that has both Windows and Linux drivers on it, but since the unit doesn’t have an optical drive you’ll need to copy them to a thumb drive to use them. You’ll also need to figure out how to install an operating system on the unit as well. In our case, since we were installing Windows 7, we used the Windows 7 uSB/DVD Download Tool to take an ISO file version of our Windows 7 install DVD and create a bootable thumb drive with the Win7 install DVD contents on it. Installation was easy peasy.

Hardware specs are pretty impressive given its low cost and small size:

  • Intel Atom Dual-Core 525 CPU
  • nVidia ION2 Graphics Processor
  • DVI-I and HDMI 1.3 video outputs
  • Integrated Gigabit Ethernet & 802.11 b/g/n wifi
  • 12V DC 60W power input so it can be easily run off battery or ships power
  • Microphone and Headphone connectors
  • LCD VESA mount (-BW model only)
  • Jetway handheld remote control
  • USB 2.0 ports (5) and eSata connection

As I mentioned, we’re investigating using these as replacements for some of the computing site computers. We installed Windows 7 on the system and between the dual-core Atom processor and the SSD I can’t tell any difference between performance on this system and the Core-2 Duo desktops that are already in the site. Other possible uses include as a thin client, a kiosk PC, a set-top box for large wall mounted LCD displays and as a small low-power PC aboard ship or inside buoys or other deployed equipment. The unit has both DVI and HDMI outputs, so you can easily drive a small LCD or a huge flat-panel TV as long as they have those inputs (as most do). The nVidia ION-2 graphics system will supposedly drive a full 1080p HD display. I took some pics of the units interior (below) so you can have an idea of how the systems are laid out inside and out.

MiniTop Front Interior View

Front Interior View

MiniTop Rear Interior View

Rear Interior View

MiniTop Side Interior View

Side Interior View

These aren’t the only mini-PCs on the market. There are others like the Zotac ZBox and the Dell  Zino HD and I’m sure plenty of others. They’re just the model that we’re playing with here at the college. Exciting times ahead as these units ramp up in performance and drop down in size and power draw.

Polar Orbiting Satellite Receiving Station

The video above is a quick screencast NASA JPL’s Eyes on the Earth application, which shows the tracks of various satellites orbiting the globe. It’s a really cool application that gives a top-notch overview of some of the satellites currently in orbit and their trajectories around the Earth. Take some time and poke around, you’ll be glad you did.

Polar Satellite RadomeThe reason I included it is that I promised to cover the polar orbiting satellite receiving station in a previous blog post about the new Satellite Receiving Station in Delaware. In the previous post I discussed the geostationary satellite receiving station. In this post, I hope to shed some light on the polar orbiting receiving setup.

What’s Inside the Radome

MODIS Satellite PassThe equipment for the polar orbiting satellite receiving station is a bit more involved than the pretty much non-moving geostationary setup. As the name implies, the polar orbiting satellites do just that, they orbit the Earth north and south, going from pole to pole. Their path is relatively simple, they just go around the earth in circles, but as they’re doing so, the Earth is rotating beneath them. The satellites point their cameras towards the earth and essentially capture a swath of data during each rotation. Since the Earth is rotating beneath them, the swath appears as a diagonal path if you look at the overlay.

Inside the RadomeIn order to capture data from a moving target, the dish has to be able to rotate and move in three axis in order to follow the satellite of interest. In order to protect the receiving equipment from the weather, it is typically installed in a circular fiberglass enclosure called a “radome”. To keep the design relatively simple, there is only one mounting configuration and radome setup created, and that’s designed to mount onboard a ship. It is then relatively simple to attach a mounting bracket to the top of a building and bolt the radome assemgly to it.

The video at the top of the page shows that there are several satellites in orbit, so the Terascan software has to pull down satellite ephemeral data from Celestrak each day, take into account the location of the tracking station, and generate a calculated schedule of which satellites will be visible to the satellite dish throughout the day. As there may be more than one satellite in view during any given time period, the satellite operator assigns a priority weighting to each satellite. The Terascan software then uses that weighting to decide which satellite it will aim the dish at and start capturing data.

Receiving Station Workstations

Acquisition and Processing SystemsInside the building is a rack of computers and receivers whose purpose in life is to control the dish on the roof of the building and to receive and process the data it relays down from the satellite. The receiving station at UD has both X and L-Band receivers which receive the data stream and pass it to a SeaSpace Satellite Acquisition Processor. The processor then sends the data packets to a Rapid Modis Processing System (RaMPS) which combines the granularized HDF data files from the satellites into a TeraScan Data File (TDF) file. Once in this format, various programs and algorithms can be run against the TDF file and channels of interest can be combined using NASA/NOAA and other user supplied algorithms to create the output product of interest. As the files can get rather large and there can be several of them coming in throughout the day, they are then moved over to a Networked Attached Storage (NAS) server and stored until they are needed.

Satellites Licensed

The UD receiving station is licensed and configured to receive data from the following satellites:

  • Aqua
  • Terra
  • NOAA 15
  • NOAA 17
  • NOAA 18
  • NOAA 19
  • MetOp-A (Europe)
  • FY-1D (China)

Hopefully this sheds a little more light on the polar orbiting receiving station and its capabilities. Let me know if there are any additions or corrections to the information I’ve posted.

New Polar and Geosynchronous Satellite Receivers for Delaware

A few weeks ago they fired up a new satellite receiving station from SeaSpace at the University of Delaware’s main campus in Newark, DE. Two receivers were brought online, one for L-Band reception from Geosynchronous Satellites and one for X/L-band reception from Polar Orbiting Satellites. Both receiving systems have dishes that are mounted on the roof of Willard Hall as it presented the least obstructed view of the sky. The adds additional capability to an east coast satellite operations contingent which includes:

  • University of Maine
  • City College of New York
  • Rutgers University
  • University of Delaware
  • University of South Florida
  • Louisiana State University
  • Purdue University

For this blog posting, I’ll only cover the geosynchronous satellite capabilities. In a future posting I’ll cover the polar orbiting hardware and its capabilities.

Geosynchronous Satellite

UD Geosynchronous Satellite Dish

The beauty of geosynchronous satellites is the simplicity with which they can be tracked. Rather than flitting all about and requiring fancy calculations and equipment to track them, you merely point the dish to a point in the sky where the satellite remains fixed relative to the motion of the earth and pretty much lock the receiving dish down. Since the satellite is moving with a trajectory and speed that matches the rotation of the earth, the satellite is said to be “geo-stationary”.

The dish used to receive the signals from the geosynchronous satellites is therefore simple in its design. It is mounted with only one axis of movement, meaning it can only be adjusted along an arc of the sky either to the east or to the west. There is a motor and lead screw mounted on the back that will either push the dish one way, or pull the dish the other in order to position it for the best signal strength. The current intent of the UD dish seems to be dedicated to constantly receiving real-time data from the GOES-EAST satellite (also known as “GOES-13”). GOES East outputs full disk imagery of the the earth from a longitude of 75 degrees west, which gives a good view of pretty much all of North and South America and a good chunk of the Pacific and Atlantic Ocean.

GOES stands for “Geostationary Operational Environmental Satellite” and it is operated by NOAA’s NESDIS or “National Environmental Satellite, Data, and Information Service” primarily to support meteorological operations and research, which includes weather forecasting and storm tracking. The dish is oriented in such a way that it could also be programmed to point to GOES-WEST (aka GOES-11)  for a satellite view of the Pacific Ocean (centered around 135 degrees west longitude) as well if the need arises.

GOES East Full Disk Infrared GOES West Full Disk Infrared

GOES Sensors

One thing to bear in mind is that GOES-13 hasn’t always been “GOES East” – it took over for GOES-12 in April 2010, with GOES-12 moving to 60 degrees West to replace GOES-10 (decommissioned) for coverage of South America. I note this so that you don’t assume that the sensors (and/or their calibration factors)  for a particular GOES station are always the same.

Imager

The current GOES-East has optical imagers with 6 channels with resolutions of 1.1km for the visible channel (one); and 4km and 8km resolutions for the near infrared, water vapor and thermal infrared channels (two through six). The imager is basically a rotating mirror and lens configuration that scans the earth from north to south, line by line to receive reflected visible light, water vapor as well as infrared radiation channels. Each line scanned is digitized and transmitted back towards the earth with measurement units of percent albedo for visible light and temperature for the water vapor and infrared information. Spectral response functions can now also be downloaded online from the NOAA Office of Satellite Operations as well as other GOES calibration information.

Sounder

GOES satellites are also equipped with a sounder with 8km resolution. The sounder scans the atmosphere over the land and ocean and provides vertical profiles which include the temperature of the surface and cloud tops as well as derived wind velocities from these measurements.

Real-time Access to Data

The key feature to having a satellite receiving station on-site is the access to the raw, real-time satellite data. Sure, you can get pull some images down from the NOAA Geostationary Satellite Server, but they would be just derived images. Scientists here at UD and elsewhere are interested in getting the latest raw data feeds from the satellites so that they can research and develop algorithms that process the raw channel data into other products in support of their research projects.

Next on my agenda is to try to give some insight into the polar orbiting satellite tracking station and the fancy gear that sits inside the radome enclosure. Cheers!

APEX Floats 101

Some students and I went on a road trip to Rutgers University in New Jersey and then ended up heading up the coast to East Falmouth, Massachusetts to meet with the fine folks at Teledyne Webb Research. During a tour of the facilities, we were introduced to the APEX floats, whose data (through the ARGO program) the students were accessing for various projects in the ORB lab. James Truman, an engineer at Webb, graciously agreed to do a quick 101 overview of the APEX on camera.

Profiling floats like the APEX are able to sink or float by varying their internal volume. A standard equation for Buoyant Force is:

F(buoyant) = –pVg

where p=density of the fluid, V=volume of the object (in this case the float) and g=standard gravity (~9.81 N/kg). By adjusting the internal volume of the float by pumping fluids in and out of the interior, we are able to make the device either more or less buoyant.  There’s a really neat cut-away animation on the UCSD Argo site that shows the guts of the units quite well.

Float technology has evolved rather quickly, with the original floats only serving as a mechanism for tracking deep ocean circulation – also called Lagrangian Drifters or ALACE (Autonomous Lagrangian Circulation Explorer) floats. They would pop up to the surface and transmit back their positions and the temperature at depth.  Using the drifters last known position and its new position gave scientists an idea of how fast and in what direction the deep ocean currents were moving. Later these drifters were equipped with CTD sensors (Conductivity-Temperature-Depth) and they took sensor readings all the way up the water column and transmitted a “profile” reading back to the mother ship. These were called PALACE or “Profiling ALACE” floats (see WHOI’s site on ALACE, PALACE and SOLO Floats).

These predecessors bring us to the modern world of the ARGO Float fleet, which consists of APEX floats from Webb Research, the PROVOR floats from MARTEC and the SOLO floats from Scripps Institute of Oceanography. My understanding is that these floats dive to a depth of around 2000 meters and drift for 10 days and then float to the surface, profiling the water column along the way. They then communicate their readings via Iridium Satellite or the ARGO system and then dive again for another 10 days or so.

NOAA has a site called ARGO KMZ Files that makes it really easy to get started tracking ARGO floats and their data. You just need to install Google Earth first – which can be downloaded at: http://earth.google.com/. Below is a screen shot of the ARGO floats in the Atlantic.

GoogleEarth_Argo

Thanks again to James Truman and the awesome people at Webb Research for taking us under their wing and spending a lot of time showing us the ropes. It was an excellent experience that the students are still talking about.

© 2024 Ocean Bytes Blog

Theme by Anders NorenUp ↑